Electroconductive Lithotripsy:
Principles, Experimental Data, and First Clinical Results of
the Sonolith 4000*

THIERRY A. FLAM, M.D.,† MAURICE BOURLION, Ph.D.,‡ NICOLAS THIOUNN, M.D.,†
FRANÇOIS SAPORTA, M.D.,† ROLAND CHICHE, M.D.,† PAUL DANCER, Ph.D.,‡
MARC ZERBIB, M.D.,† and BERNARD DEBRÉ, M.D.†

ABSTRACT

The electroconductive lithotripter (ECL) is a new concept for shockwave generation in which a highly conductive solution channels the discharge between the anode and cathode. In vitro experiments showed a linear relation between the voltage setting and the pressure at F2. In vitro stone disintegration studies showed a considerable reduction in shockwave pressure variability, improved energy transfer to the stone, and a unique linear relation between fragmentation and electrode voltage without a saturation effect. This new concept has been used clinically in the Sonolith 4000 lithotripter. In 142 evaluable treatments with a 3-month follow-up, the overall stone-free rate was 82%, and the retreatment rate in stone-free patients was 10%. For stones equal or less than 10 mm, the 3-month stone-free rate, retreatment rate, and secondary procedure rate were 85%, 5%, and 0%, respectively. For stones between 11 and 20 mm, these figures were 83%, 4%, and 2%, respectively. The efficiency quotient was found to be 81% for stones equal or less than 10 mm and 78% for stones between 11 and 20 mm. These clinical results confirm the improvements in efficacy observed in vitro with very satisfactory tolerance.